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Motivation

• Novel applications (IoT, cyberphysical, industry 4.0) 
process sensitive data  crypto blocks in systems 
designed by people who are not crypto experts.

• Lightweight ciphers: marginal security is the price for 
very low area footprint and power consumption.

• Goal: automatic construction of fault-injection attacks 
for a given cipher with as little user input as possible.

• Quickly find vulnerabilities in a new crypto implemen-
tation (or in a tweak of an existing implementation).

• Automatically analyze existing countermeasures.
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AutoFault

• Framework to construct an algebraic fault attack.
– Less fault-injections than statistical attacks but higher 

precision of each fault-injection.

• Input 1: Hardware description of the cipher.
– Current prototype: register-transfer, in principle: gate-level.

• Input 2: Fault list according to a fault model.
– Information / guesses about possible fault types & locations.

• Output: Algebraic formula handed to a SAT solver.
• Difference to earlier approaches: No inputs by 

skilled cryptoanalysts (like “fault equations”)!
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Outline

• Framework AutoFault: Motivation & potential use
• Realization

– Attack construction
– SAT solving

• Results
– Small-scale AES
– LED-64 (an actual lightweight cipher)
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AutoFault Diagram
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Note: AutoFault does not
require an algebraic description
of the cipher as input!
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AutoFault Potential Uses

• Quickly analyze a tweak/„optimization“ of a known 
algorithm (e.g., less rounds, smaller space).

• Quickly analyze an implementation for, e.g., 
locations where faults lead to successful attacks.

• Quickly analyze locations not covered by low-level 
countermeasures (shields, sensors).

• Fundamental question: How far can we get in a fully 
automated manner, without non-trivial cryptanalsis?
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Fault Attack Construction

• If cipher circuit is sequential, map it to a combina-
tional circuit via time-frame expansion (TFE).
– N clock cycles (e.g., N rounds) = N copies glued together.
– Fault in cycle i = fault in i-th copy in TFE circuit.

• Construct differential model.
– Two copies of TFE circuit fed by idential input (plaintext), 

round constants, key; the only difference is at fault site.
– Differential. model starts from first fault-affected location.
– Output of the circuit (ciphertext) set to values observed (in 

case of an actual attack) or simulated (during analysis).
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Construction for a Hypothetical Cipher
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SAT Solving

• Differential circuit mapped into conjunctive normal 
form (CNF) using Tseitin transformation.
– E.g., AND gate with inputs a, b and output c is mapped to 

c  (a  b) or, in CNF, (c + a)(c + b)(a + b + c).

• Represent fault by SAT clauses involving variables 
from fault-free and fault-affected circuits according 
to fault model (e.g., maximal number of faulty bits).

• Set circuit output variables to ciphertext bits and 
run SAT solver in incremental mode.
– if the solution is not a correct key, generate a conflict 

clause and continue searching for a different solution.
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Experimental Evaluation

• Considered ciphers: Small-Scale AES, LED-64.

• Considered faults: Exactly 1, exactly 2,  4 or  8 
bits in one nibble or two neighboring nibbles.
–  4 faults in one nibble = „nibble fault“ in earlier work.
–  8 faults in 2 neighboring nibbles = „byte fault“.

Cipher Block size # Rounds Formula size (# clauses)
AES 2-2-4 16 bit 10 3,086
AES 4-4-4 64 bit 10 13,420
LED-64 64 bit 32 15,544
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Results for Small-Scale AES

Fault model AES 2-2-4 AES 4-4-4
Mean solve

time [s]
Avg. # key 
candidates

Mean solve
time [s]

Avg. # key 
candidates

1 bit, 1st nibble 16.46 5.16 9,574.61 620.26
1 bit, 1st / 2nd nibble 16.39 7.61 7,173.82 324.18
2 bit, 1st nibble 16.32 11.93 26,357.30 170.40
2 bit, 1st / 2nd nibble 17.98 25.76 23,661.00 55.00

• Runtimes increase drastically for larger space, and 
attack on the full AES (4-4-8) does not terminate.

• Higher fault multiplicity tends to complicate the 
search but can provide better restrictions.



12

Results for LED-64

Fault model Mean solve
time [s]

Avg. # key 
candidates

1 bit, 1st nibble 254.78 3,508.33
1 bit, 1st / 2nd nibble 442.72 3,044.23
2 bit, 1st nibble 384.96 6,395.38
2 bit, 1st / 2nd nibble 847.77 2,303.87
1 bit, any nibble 712.70 4,896.29
1 bit, after Sbox 127.66 6,858.65
 4 bit, 1st nibble 365.78 7,051.83
 8 bit, 1st / 2nd nibble 762.79 1,163.36

Corresponds to
„nibble faults“ in 

[Jovanovic 
COSADE‘12]

Corresponds to
„byte faults“ in 

[Zhao FDTC ‘13]
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LED-64: Discussion

• First breaking of a state-of-the-art cipher with no 
manually derived cipher-specific cryptanalysis.
– [Jovanovic IACR ePrint 2012]: fault tuples.
– [Zhao FDTC 2013]: fault-dependent differentials.

• Number of key candidates (~7,000) inconsistent 
with [Jovanovic COSADE‘12] (219 – 226).
– Fault tuples in [Jovanovic COSADE‘12] may include 

candidates inconsistent with differential model.
– Conflict clauses learned by SAT solver may eliminate 

parts of solution space with inconsistent solutions.
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LED-64: Run Time

• Typically, 10–15 minutes.
– Better than [Jovanovic‘12]

(several hours).
– Worse than fastest confi-

guration in  [Zhao‘13]
(45 seconds) with reverse
cipher rounds and clauses
from fault differentials.

• ~ 1 order of magnitude
slowdown for a fully
automatic attack without
any cipher-specific tricks.
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Conclusions

• Do the automatically constructed fault attacks work? 
– Yes, but only for lightweight ciphers.

• How much do we need to pay? 
– Approximately 1 order of magnitude in run time.

• What is the status of AutoFault?
– Prototype implementation which reads a subset of 
VHDL and supports basic fault models.

• What is the next step in developing AutoFault? 
– Integrate advanced fault models (timing!)

• Are any fundamental questions still open?
– Deriving cryptoanalytic conditions during solving.


