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Motivation

* Novel applications (IoT, cyberphysical, industry 4.0)
process sensitive data - crypto blocks in systems
designed by people who are not crypto experts.

» Lightweight ciphers: marginal security is the price for
very low area footprint and power consumption.

o (Goal: automatic construction of fault-injection attacks
for a given cipher with as little user input as possible.

e Quickly find vulnerabilities in a new crypto implemen-
tation (or in a tweak of an existing implementation).

« Automatically analyze existing countermeasures.




AutoFault

 Framework to construct an algebraic fault attack.

— Less fault-injections than statistical attacks but higher
precision of each fault-injection.

 Input 1: Hardware description of the cipher.
— Current prototype: register-transfer, in principle: gate-level.

e Input 2: Fault list according to a fault model.
— Information / guesses about possible fault types & locations.

e Qutput: Algebraic formula handed to a SAT solver.
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 Framework AutoFault: Motivation & potential use

* Realization
— Attack construction
— SAT solving
* Results
— Small-scale AES
— LED-64 (an actual lightweight cipher)
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Note: AutoFault does not
require an algebraic description
of the cipher as input!




AutoFaul t pPotential Uses

* Quickly analyze a tweak/,optimization“ of a known
algorithm (e.qg., less rounds, smaller space).

e Quickly analyze an implementation for, e.g.,
locations where faults lead to successful attacks.

e Quickly analyze locations not covered by low-level
countermeasures (shields, sensors).

 Fundamental question: How far can we get in a fully
automated manner, without non-trivial cryptanalsis?




Fault Attack Construction

 If cipher circuit is sequential, map it to a combina-
tional circuit via time-frame expansion (TFE).

— N clock cycles (e.g., N rounds) = N copies glued together.
— Fault in cycle 1 = fault in i-th copy in TFE circuit.

e Construct differential model.

— Two copies of TFE circuit fed by idential input (plaintext),
round constants, key; the only difference is at fault site.

— Differential. model starts from first fault-affected location.

— Output of the circuit (ciphertext) set to values observed (in
case of an actual attack) or simulated (during analysis).




Construction for a Hypothetical Cipher
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SAT Solving

 Differential circuit mapped into conjunctive normal
form (CNF) using Tseitin transformation.

— E.g., AND gate with inputs a, b and output c is mapped to
c=(a-b)or, in CNF, (-c + a)(—c + b)(—a + —=b + ).
 Represent fault by SAT clauses involving variables
from fault-free and fault-affected circuits according
to fault model (e.g., maximal number of faulty bits).

o Set circuit output variables to ciphertext bits and
run SAT solver in incremental mode.

— If the solution is not a correct key, generate a conflict
clause and continue searching for a different solution.




Experimental Evaluation

 Considered ciphers: Small-Scale AES, LED-64.

Cipher Block size # Rounds Formula size (# clauses)
AES 2-2-4 16 bit 10 3,086
AES 4-4-4 64 bit 10 13,420
LED-64 64 bit 32 15,544

e Considered faults: Exactly 1, exactly 2, <4 or<8
bits in one nibble or two neighboring nibbles.
— < 4 faults in one nibble = ,nibble fault” in earlier work.
— < 8 faults in 2 neighboring nibbles = ,byte fault”.
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Results for Small-Scale AES

Fault model AES 2-2-4 AES 4-4-4
Mean solve  Avg.# key Mean solve Avg. # key
time [s] candidates time [s] candidates
1 bit, 1t nibble 16.46 5.16 9,574.61 620.26
1 bit, 15t/ 2" nibble 16.39 7.61 7,173.82 324.18
2 bit, 15t nibble 16.32 11.93 26,357.30 170.40
2 bit, 1st/ 2"d pibble 17.98 25.76 23,661.00 55.00

 Runtimes increase drastically for larger space, and
attack on the full AES (4-4-8) does not terminate.

« Higher fault multiplicity tends to complicate the
search but can provide better restrictions.
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Results for LED-64

Fault model Mean solve Avg. # key
time [s] candidates
1 bit, 15t nibble 254.78 3,508.33
1 bit, 15t/ 2" nibble 442.72 3,044.23
2 bit, 15t nibble 384.96 6,395:38
2 bit, 15t/ 2"d pibble 847.77 303.87
1 bit, any nibble 112776 4,896.29
1 bit, after Sbox 127.66 6,858.65
< 4 bit, 15 nibble 36578 7,051.83
< 8 bit, 1st/ 2"d pibble 762.79 1,163.36

Corresponds to
»nibble faults* in
[Jovanovic
COSADE'12]

Corresponds to
,oyte faults“ in
[Zhao FDTC ‘13]
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LED-64: Discussion

* First breaking of a state-of-the-art cipher with no
manually derived cipher-specific cryptanalysis.

— [Jovanovic IACR ePrint 2012]: fault tuples.
— [Zhao FDTC 2013]: fault-dependent differentials.

 Number of key candidates (~7,000) inconsistent
with [Jovanovic COSADE'12] (21° — 229),

— Fault tuples in [Jovanovic COSADE‘12] may include
candidates inconsistent with differential model.

— Conflict clauses learned by SAT solver may eliminate
parts of solution space with inconsistent solutions.
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LED-64: Run Time

Typically, 10-15 minutes.
— Better than [Jovanovic‘12]
(several hours).
— Worse than fastest confi-
guration in [Zhao'13]
(45 seconds) with reverse
cipher rounds and clauses
from fault differentials.
~ 1 order of magnitude
slowdown for a fully
automatic attack without
any cipher-specific tricks.
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Conclusions

Do the automatically constructed fault attacks work?
— Yes, but only for lightweight ciphers.

How much do we need to pay?

— Approximately 1 order of magnitude in run time.
What is the status of AutoFault?

— Prototype implementation which reads a subset of
VHDL and supports basic fault models.

What is the next step in developing AutoFaul t?

— Integrate advanced fault models (timing!)

Are any fundamental questions still open?
— Deriving cryptoanalytic conditions during solving.

15



